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Abstract—A finite strain theory for transversely isotropic elastic-plastic materials is developed. The
formulation is based on a multiplicative decomposition of the deformation gradient tensor into
elastic and plastic parts. The axis of transverse isotropy at each material point is assumed to “*follow™
the deformation of the continuum. We derive a constitutive equation for the plastic spinW?, which
is the average spin of the continuum as seen by an observer spinning with the substructure (e.g. the
fibers in a metal-matrix composite). It is shown that WP = mm - DT — D” - mm, where D[ is the plastic
part of the deformation rate, and m is the unit vector in the direction of transverse isotropy in the
intermediate (isoclinic) configuration. The numerical implementation of the developed model in a
finite element program as well as an algorithm for the numerical integration of the elastoplastic
equations are discussed in detail. The problem of plane strain extrusion of a metal-matrix composite
reinforced by short aligned fibers is solved using the finite element method.

1. INTRODUCTION

The mechanics of finite elastoplastic deformations has been well developed in recent years
and the problem of the appropriate generalization of the classical laws of elastoplasticity
to the casc of finite deformations has been addressed in numcerous publications. We mention
amongst these the work of Hill (1966, 1967), Lee (1969), Mandel (1971a), Hill and Rice
(1972), Asaro and Rice (1977), Dafalias (1983, 1985a.b, 1987a, 1988) and Loret (1983).
Significant progress has also been made in the development of new algorithms for the
numerical integration of the clastoplastic constitutive equations in the prescnce of finite
strains and rotations (Nagtegaal and De Jong, 1981 ; Simo and Ortiz, 1985; Simo, 1985;
Moran ¢t al., 1990 ; Weber and Anand, 1990).

A detailed analysis of the mechanical behavior of transversely isotropic elastoplastic
solids undcr finite isothcrmal deformations is presented in this paper. We consider an
elastoplastic material which is characterized by persistent transversely isotropic symmetries
in its relaxed (elastically unloaded) configuration. At cach material point in the undeformed
configuration B, we specify a material direction that defines the local axis of transverse
isotropy. The local axis of symmetry is embedded in the continuum and follows its defor-
mation. To be more precise, we let dX be an infinitesimal material line element emanating
from a material point A at B, along the local axis of symmetry ; when the material is subject
to finite plastic strains, the local direction of transverse isotropy is defined by the new
orientation of the material element dX, namely FP-dX, where F” is the plastic part of the
deformation gradient that defines the intermediate unstressed configuration as discussed in
detail in the following section.

As an example, we consider the gcometry shown in Fig. |, where an elastoplastic beam
refinforced by short fibers is bent plastically. We denote by ‘B, and B the initial and final
configurations respectively. Let m, be the unit vector in the direction of the fiber at a
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Fig. 1. Plastic bending of a beam reinforced by short aligned fibers.
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material point at B,. Although in a real fiber-reinforced composite material m, exists only
at points occupied by fibers, in our continuum model we assume that m, is a continuous
vector field defined everywhere in the body. After plastic bending, the direction of the
corresponding material fiber B is defined by the unit vector m = F-m,/|F - m,|, the direction
of m depending on the particular material point considered (see Fig. 1). Assuming that the
elastic strains are small, we can identify the configuration B (to within elastic strains) with
the aforementioned relaxed (unstressed) configuration where the material symmetries are
defined. Our interpretation of persistent transverse isotropy is that the beam at B is locally
transversely isotropic with the symmetry axis defined locally by the direction of m. The idea
of the axis of transverse isotropy being convected with the deformation was first incor-
porated in plasticity theories by Mulhern er al. (1967, 1969).

The spin of the characteristic material direction (e.g. fiber in a composite material) is,
in general, different from the average spin of the continuum. The quantity that emerges
from such a distinction in kinematics is the plastic spin, which is the average spin of the
continuum relative to the material substructure. Mandel (1971a, 1973) and Kratochwvil
(1971, 1973) were the first to suggest that a complete macroscopic elastoplasticity theory
must include constitutive relations not only for the plastic part of the deformation rate but
for the plastic spin as well. Using the representation theorems for isotropic functions,
Kratochvil (1973) concluded that the plastic spin vanishes identically in isotropic materials.
In anisotropic materials, however, the plastic spin is of major importance and has been the
focus of a scrics of papers by Dafalias (1983, 1984, 1985a.b, 1987a, 1988) and Loret
(1983) where constitutive equations are formulated for different anisotropies using tensorial
structure variables.

In Scction 2 we discuss the kinematics of finite elastoplastic transformations and
identify the intermediate unstressed configuration with Mandel’s (1971a) isoclinic con-
figuration. The clastoplastic constitutive equations are presented in Scetion 4 and a consti-
tutive equation for the plastic spin is developed. The numerical implementation of the
developed model in a finite element program and an algorithm for the numerical integration
of the clastoplastic equations are presented in Sections S and 6. The problems of finite
simple shear and plain strain extrusion of a fiber-reinforced metal -matrix composite are
solved.

Standard notation is used throughout. Boldface symbols denote tensors the orders of
which are indicated by the context. The prefices tr and det indicate the trace and the
determinant respectively, a superscript T the transpose, subscripts s and a the symmetric
and anti-symmetric parts of a tensor, and a superposed dot the material time derivative.
All tensor components are written with respect to a fixed Cartesian coordinate system. Let
a and b be vectors, A and B sccond order tensors, and C and D fourth order tensors;
the following products are used in the text (ab), = a,b,, (A*b), = A,h,, (b-A), = beAy,.
(AB), = A, B, (AB),y = A, By, A: B = A, B, (C:A),; = C ydi, (A:C),, = A Cyyy, and
(C:D)isesr = CopmnDmis» Where the summation convention is used for repeated indices. We
also denote by J the symmetric unit fourth order tensor with Cartesian components J,,.
1= (040,+0,0,)/2. 8, being Kronecker's delta.

2. KINEMATICS

The kinematics of finite clastic plastic deformation is described by the multiplicative
decomposition of the deformation gradient F:

F=F-F, (n

formally introduced in continuum mechanics by Lee and Liu (1967) and Lec (1969).
According to this decomposition, the neighborhood of a material point is mapped first
from the undeformed configuration B, to the intermediate unstressed configuration B, by
the plastic part F?, and then carried to the current configuration by the elastic part F~.

In the case of a strong Bauschinger effect when the elastic region does not include
the stress origin, the stress cannot be reduced to zero without causing additional plastic
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deformation. In such a case, the unstressed configuration is only notional and is reached
by a “virtual™ elastic unloading with all active or potentially active mechanisms of plastic
flow “frozen™ (Mandel, 1973; Lee, 1981). A detailed discussion on the definition of the
unstressed configuration has been presented by Dafalias (1987b). Here, we assume that the
stress origin is always inside the yield surface.

We consider a transversely isotropic elastoplastic continuum, in which the local axis
of symmetry is defined by the orientation of a certain infinitesimal material fiber dX at each
point. The multiplicative decomposition (1) is written for each material point and the
intermediate configuration ‘B,, determined by F?, is defined in such a way that the orientation
of the aforementioned material fiber at B, with respect to a global system is the same as the
corresponding orientation in the reference configuration B, (see Fig. 2). The intermediate
configuration is now the so-called “isoclinic configuration” introduced by Mandet (1971a,
1974). and is uniquely defined to within a rigid rotation about the local axis of symmetry.

The velocity gradient L can be written as

L=FF'=F-F'+F-F-F'-F" )
The deformation rate D and the spin W, defined as the symmetric and anti-symmetric parts

of L. are now written as (Willis, 1969 ; Freund, 1970 ; Asaro and Rice, [977 ; Nemat-Nasser,
1982)

D =D+D", 3)
and
W= W*+Wr, 4
where
Df = (F-F), W= (F-F ), &)
D" = (F-F-F ' F),, WP =(F-F-F'-F),. 6)

In the isoclinic configuration we also define
LP=F-F', D= (F-F~"), and WP = (F"-Fr-"),. (7

We mention that an arbitrary rigid body rotation can be superposed to the isoclinic
configuration and still leave the material point under consideration unstressed. In that
sense, the intermediate unstressed configuration is not uniquely defined and the isoclinic
configuration is just a convenient choice. A thorough discussion on the definition of the

FP
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Fig. 2. Schematic representation of the multiplicative decomposition of the deformation gradient.



2140 N. ARavas

intermediate configuration has been presented by Dafalias (1987a. 1988), who showed that
the choice of that configuration can be made arbitrarily, provided that the corresponding
kinematic quantities, such as the elastic and plastic parts of the deformation rate and the
plastic spin, are properly defined. It is also important to realize that the spin of the
substructure (e.g. fibers in a composite material) is, in general, different from the average
spin W of the continuum, and that the objective rates used in the constitutive equations
must be co-rotational with the substructure (as opposed to the continuum) (Mandel. 1971a;
Dafalias, 1984). When the constitutive equations are written in the isoclinic configuration,
the aforementioned co-rotational rates are simply the usual time derivatives. since the
orientation of the substructure does not vary with time in the isoclinic configuration. In
this connection. we mention that the definitions of D°, D?, WP and W*, given above, are
appropriate when the intermediate configuration is isoclinic: when B, is not isoclinic,
however, the material time derivatives in (5) and (6) must be replaced by derivatives co-
rotational with the substructure (Dafalias, 1987a). A detailed discussion of the proper
definition of the elastic and plastic parts of the deformation rate can be also found in
Mandel (1971b, 1981).

The constitutive equations can be written in any one of the three configurations B,
B,, and B, and then appropriately transformed to any of the other two if desired. We
choose to define the material symmetries and write the constitutive equations and the yield
condition at the intermediate configuration ; this is, in a sense, a natural choice, since B, is
the reference (or undeformed™) configuration for the elastic part of the deformation F,
and the “current” {or deformed) configuration for the plastic part F® [see also Willis (1969),
Freund (1970), Kratochvil (1973), Fardshisheh and Onat (1974) and Hahn (1974)]. We
also choose to work in terms of the isoclinic configuration so that the use of co-rotational
rates in the constitutive equations is avoided and the developed model is easier to implement
in a finite clement program,

3. WORK-CONJUGATE VARIABLES

In this scction we bricfly discuss several work-conjugate variables defined in the current
as well as in the isoclinic configuration. The rate of stress working per unit mass s

W= f r (D). (8)

Fo

where p, is the mass density in the undeformed configuration B,, v = Jo is the Kirchhoff
stress, o is the true or Cauchy stress defined in the current configuration and J = det (F).
Using eqns (5)-(7) we derive the following equivalent expressions for W':

W= ;lw(lr (tD)+tr (- D)) = ;)L(lr (- F)+tr (E-LM)), 9)
a (4]

where €€ = JF !+ ¢ is the elastic nominal (first Piola~Kirchhoff) stress tensor defined at
B, J = det (F°), and

L= Fl o F (10)

We mention in passing that, when the material is plastically incompressible, J7 = det
(F?) = 1 and J = J; in the general case, however, where J" # |, we find that J = WANLS
The non-symmetric stress tensor T has been used in the mechanics of finite deformations
of single crystals to define the “‘thermodynamic shear stresses™ that govern slip (Rice, 1971)
or, equivalently, the “generalized Schmid stress”™ (Hill and Havner, 1982), and by Hahn
(1974) in his finite deformation theoroy of plasticity ; the transpose of I has also been used
by Mandel (1971a). Halphen (1975), Teodosiu and Sidoroff (1976). and, more recently, by
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Van Der Giessen (1989a.b) and Mohan er al. (1991) in their studies of finite elastoplastic
deformations.

We mention in passing that the invariants of L are the same as those of z, and that the
deviatoric part of & is related to the deviatoric part of ¢ through an equation similar to
(10), i.e.

T =F"'rF, (11

where a prime denotes the deviatoric part of a tensor. It is important to realize, however,
that (11) does not necessarily imply that X’ is independent of the hydrostatic Kirchhoff
stress p = t,4/3. since F° is, in general. a function of p.

It is also interesting to note that X is not symmetric, but is not an arbitrary second
order tensor either. Lubliner (1986, 1990) mentions that the combination C** X is a sym-
metric tensor, and consequently £ must obey the constraint

(C+E) =C £, (12)

where C is determined by $° and hence by X. The above condition is equivalent to three
non-linear equations involving the components of X, limiting X to a six-dimensional
manifold in the nine-dimensional space of second order tensors (Lubliner. 1986, 1990).

It should also be mentioned that, when the material is elastically isotropic, X is
symmetric (Mandel, 1971b: Hahn, 1974). A simple proof of this is given in the following.
Using the polar decomposition theorem we can write F* = V¢- R¢, where V€ is the symmetric
left elastic stretch tensor. The equation for £ now becomes

Y=R-VeE g VER (13)

In isotropic elasticity, the principal directions of © coincide with those of V¢ (coaxiality). so
that £+ V= V-t and (13) reduces to

Y =R 1R (14

In that case ¥ is the symmetric and elustic work conjugate to the Lagrangian logarithmic
strain measure (Hill, 1968 ; Freund, 1970). Similarly, (11) reduces to

L =RT-7-R, (15)

and L’ becomes independent of p. It should be emphasized, however, that in elastically
anisotropic materials I is not a symmetric tensor, neither is the right-hand side of (14) an
elastic work conjugate to the Lagrangian logarithmic strain measure.,

4. CONSTITUTIVE EQUATIONS

4.1, Elastic equations
We assume that an clastic potential ® exists in the isoclinic configuration, so that

e . o0
Piage of equivalently §° = p, S (16)

§ =

where S°=JF'-g-F~7 is the elastic seccond Piola-Kirchhoff dcfined at B,
S = (J/J)S = F~'-t-F 7, and p, is the mass density in the isoclinic configuration 8,.

We consider a transversely isotropic material and denote by m the unit vector along

the focal direction of axial symmetry in the isoclinic configuration B,. For such a material,

the elastic potential ® must be a function of the invariants tr (E°), tr (E%), tr (E®?), tr (E*+ A)

and tr (E©*- A), where A is the orientation tensor A = mm [see, for example, Spencer (1971)].

SAS 29:17-C
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In the following, we derive the rate form of the above hyperelastic constitutive equation.
Differentiating (16) with respect to time and taking into account that, at each material
point, A remains fixed in the isoclinic configuration, we find

: Foal )

S = C:E°. where C=poﬁ. (17)

After some lengthy but otherwise straightforward calculations, we find that (17) can be
written in the current configuration B as (Dafalias, 1985b; Needleman, 1985):

T=9:D", (18)
where
T=t+1 - Wr—W*-, = FionF5Fiy FiyConnpy (19, 20)
0 = 9oy T, Q1
and
Tt = Htaly+ 1,0, + 0 tu+ 04T (22)

When §¢is a linear function of E°, ® should be a quadratic function of the components
of E°, and, therefore, it must be of the form (Spencer. 1972, 1984):

po® = atc* (E) + b tr (E) +ctr* (E° - A) +d tr(E¥ - A) +e tr (EF) tr (E°- A),  (23)

where a, b, ¢, d and ¢ are the five independent elastic constants of the transversely isotropic
material. In that case

S = C:F, (24)
and
C = 2ul14+2hJ + 2cAA+dP + (1A + Al), (25)
where J is the symmetric unit fourth order tensor as defined in the Introduction, and
Pl/kl = %(A:k6]I+AAI‘S/k +5lkAj/+5I1Ajk)‘ (26)
The constants a, b, ¢, d and e can be written in terms of the “standard™ elastic constants
E,\. i1, ias, Ksyand vy, as defined, for example, in Christensen’s (1979) book, where the

x,-axis is in the direction of transverse isotropy : it can be readily shown that

a = YKy — ), b=y, c=VE 4+ = 2u0+ M =2v5) Ko,
(27, 28, 29)

d=2p1—pn) e = py—(1-2v))Ky;. (30, 31)

The general form of elastic constitutive equations for anisotropic materials is discussed
in detail in the work of Boehler (1975, 1979) and Walpole (1981).

4.2. Plastic equations

The yield condition and the flow rule are written in the isoclinic configuration in terms
of the plastic work conjugate quantities £ and Lf = Dl + W?. One of the advantages of
working in terms of work-conjugate quantities is that a *“normality rule” in conjugate stress
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and strain variables applies either for every choice of reference state and strain measure or
for none (Hill and Rice, 1973). It should be emphasized, however, that Hill and Rice (1973)
use a fixed reference configuration and express their normality rule and the elastic-plastic
decomposition of their strain rate in terms of work-conjugate variables and the associated
tensor of the elastic compliance, whereas, here, I, L?, and the strain-energy function are
all defined in the isoclinic configuration 8B;, which is evolving with F?.

The formulation presented in the following makes use of the representation theorems
for isotropic functions developed by Wang (1970a.b), Smith (1971) and Boehler (1977),
and parallels the works of Hahn (1974), Loret (1983) and Dafalias (1985a). Anticipating
the constitutive equations for the plastic spin developed in the following section, we choose
to write explicitly the representations of the plastic part of the deformation rate and the
plastic spin (instead of simply referring to the aforementioned works) in order to derive
several simple relationships among the coefficients of the constitutive equations for D? and
WP (eqns (37) and (38) below).

We write the yield condition in the isoclinic configuration B, as

f(E.A5) = f(E.E,.A,5) =0, (32)

where L, and I, are the symmetric and anti-symmetric parts of I, s denotes a collection of
state variables (which can be scalars or tensors of any order), and f and f are isotropic
functions (Liu, 1982).

The constitutive equations for DI and W', and the evolution equations for the hard-
ening parameters s are written as

DF = (DNP(E, A, 5), WP =(DQNEA,s) and  § = (ADFE.ALS), (33)

where NP, QF and § are isotropic functions of their arguments, 1 is a loading parameter,
y=4ifi>0and (A =0if 1 <0.

We mention again that the material time derivatives used in the evolution equations
of the state variables in (33,) can also be viewed as co-rotational with the substructure,
since the orientation of the latter is fixed at all times in the isoclinic configuration.

The corresponding equations in the current configuration would be

D* = (IHN* and W' =(HQr, (34)

where
NP =[F-(NP+Q"):-F'], and Q° = [F-(N'+Q°)-F'].. (35)

If we now assume that all state variables s are scalar and use the representation theorems
for isotropic functions, we conclude that, for a transversely isotropic material, the most
general form of /, D and W' is
S (B, tr (B, tr (B)), tr (E]), tr (T, - A), tr (B2 - A). tr (£, EJ),
tr(E-EH, tr (AE), tr (E,*A-I), tr (E2-A-L,),
tr(E,-E2-A-Ed),s) =0, (36)

D! =¢1+¢,E,+¢;E]+d A+ L2+ ¢(E,"A+A L)
+@(Z-A+A-ZN+¢4(E, L, L, L)+ oL, "L, ‘L,
+¢10(Z3 L, ~L,-E))+ ¢, (5, 'L, -EI-L}-E,-E,)
+@1:(A L, —L, A)+ ¢ L, AL, +0 (5, -A-EI-E1-A,T)), 37

and
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W= mZ +n(E o A-AE) 4550 A-A-L))
S AR ~E A ) (B0, +E L)
(B —E R ) 4T, A+ACE,
+N(AZ] L] A), (38)

where the ¢s and the 55 are scalar-valued functions of the invariants that enter the argument
of fin (36).

In the formulation above, the non-symmetric stress tensor ¥ is decomposed into its
symmetric and anti-symmetric parts so that the standard form of the representation
theorems can be used. Of course, the general expressions (36}~(38) can be written in terms
of T alone if one substitutes £, = (E+X7)/2 and £, = (£—~X7)/2. It should also be noted
that. when the elastic strains are small. £ is symmetric to within terms of order elastic strain
times stress (see Section 4.6 below).

Using the consistency condition f = 0 and taking into account that, at each material
point. A remains fixed in the isoclinic configuration, we find that (Aravas, 1991)

A=r:D, (39
where
P &
and
N' = F "NF T = 1,0, =104 (41)
Summarizing, we write (34) as
D" = lz(}:)N"r:D and WP = A(H)Qr: D, (42)

where A(4) is the Heaviside step function.

We conclude this section by mentioning that in the works of Mandel (1971a), Sidoroff
and Teodosiu (1986) and Van Der Giessen (1989a,b) the yicld condition, which is written
in terms of the non-symmetric stress X at 3B, is also used as a plastic potential for L?. The
completeness of such a flow rule has been questioned by Lubliner (1986, 1990), in view of
the fact that ¥ is limited to a six-dimensional manifold. Furthermore, Lubliner (1986) has
shown that the normality rule resulting from “the principle of maximum plastic dissipation”
determines only the projection of L? onto a six-dimensional subspace of the spuce of second
order tensors, so that a constitutive equation for the plastic spin can be written inde-
pendently.

4.3, A constitutive equation for the plustic spin

We consider a unit vector my attached to a material fiber in the direction of axial
symmetry in the undeformed configuration B,. The corresponding unit vector in the
intermediate configuration B, is m = F®+m,/|F® - m,}|. Since the intermediate configuration
is isoclinic, we have shown that m = m,, which actually means that m, (or m) is an
eigenvector of F*. Furthermore, the rate of change of m in the isoclinic configuration
vanishes, so that

i = (W 4+ D' mm—mm-D') m =0 (43)

The above equation shows that m is the axial vector of the anti-symmetric tensor WP+
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D? -mm —mm-D?, and, therefore. we have the representation [see, for example, Ogden
(1984)]

WP+ Df - mm —mm- D} = x(mm, —m,m.). ()

where m., m, and m form an orthonormal basis. and « is an arbitrary constant. The right-
hand side of (44) is a spin about m at B, and reflects the arbitrary rigid rotation about the
local axis of symmetry that can be superposed on the isoclinic configuration as discussed
in Section 2. Transverse isotropy implies rotational symmetry about m, so that a spin about
m is inconsequential ; therefore, x can be set to zero in (44), which reduces to

Wr=A-Df -Df-A. (45)
Aravas and Aifantis (1991) have also derived (45) for the special case of plane motions. In
view of (45), one might be tempted to reach the conclusion that a constitutive equation for
WP (or WP) is not necessary. since WP can be determined in terms of Df. We emphasize,
however, that (45) must be viewed as a constitutive equation for WP, since it is based on
the fact that the direction of transverse isotropy at each material point follows the defor-

mation of the continuum, and this is a constitutive assumption by itself.
Equation (45) shows that the scalar functions in (37) and (38) must be such that

n:=—(d2+ds). N3 = —(d3+7), n1=0dn n=¢s (46)
and
m=n=ns=ny=¢s=¢y=dy=¢, =¢ =0 (47)
The most general form of DI and W! now becomes

DP = p I+ X+ X+ A+P X +Po(E-A+A-L)
+¢ (B A+A I+ HAE —ECA)+ I AL, (48)

and

WP = —(h2+ ) (E, A—A-L)—(dy+d)(E]-A-A-L))
+¢12(E,A+A L) +¢s(A-LI-LI-A). (49)
4.4. Rate form of the elastoplustic equations

Using the rate form of the elasticity equation (18) together with the additive strain rate
decomposition (3) and the expression (42,) for D® we find

T=9:D° = (D=D") = £ (D-h(/)N°r:D), (50)
or
T=29:D, (50
where
£ = 8 :(J-h(J)N"r). (52)

Equation (51) can also be written as
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T=29,:D. (53)
where a superposed V denotes the Jaumann derivative, and
Q= Q4+ h(A)(z ¥~ QP 1)r. (54)

4.5. Hill's anisotropic yield criterion

A special case of the yield condition (32) is that due to Hill (1948, 1950). which is
written in the following in terms of the symmetric part of . When the x-axis is along the
axis of transverse isotropy. Hill's criterion is written in the isoclinic configuration as

F(Z—Zu) +GUEg =202 +(E4 — 1))
+2G+2A)TH+2M (25 +25) =0 (F) = 0. (55)

where F, G and M are constants, g, is a material parameter characteristic of the current
state of hardening, and £ is the equivalent plastic strain to be defined in the following. The

tensile yield stresses in the axial and transverse directions are 0,, = 6,/ /2G and 0,, = 7,/
\/F+G respectively ; the corresponding yield stresses in shear are 7, = ¢,/./2M and

Dafalias (1987b) and Dafalias and Rashid (1989) have shown that the above equation
is indeed of the form (36) and that, with respect to an arbitrary Cartesian coordinate system,
can be written as

(GH2AUr (XD +2M-G=2F)tr (E*-A)
+(5G+ F-2M)tr* (T, A)—o}(f) = 0. (56)
The yield condition (56) reduces to that of von Mises when F = G = 1/2and M = 3/2. The

above equation can also be used as a plastic potential in the isoclinic configuration, in which
case

. Of
DF = () ) = 4 LT B+ A+ A, 5
where
¢, = — M —-G=2F)tr (E;-A), ¢y = 2(AN(G+2F), (58. 59)

by = 205G+ F=2M)tr (T;- A), P = 2(ID(M -G —2F). (60, 61)
Using equation (45) we find that the corresponding equation for the plastic spin is
WP = 2{AOM(A-E,~L,-A). (62)

It should be noted that the above equation is consistent with Dafalias’ (1983, 1984)
general formulation for transversely isotropic materials ; in fact, when Dafalias’ plastic spin
parameter 7 is set to 2M, eqn (62), above, is recovered.

Following Hill (1950) we define the equivalent stress & in the isoclinic configuration as

3 .
Fle 2 2 -G-— TP-A
¢ 2(F+26)[(G+ e (T ) +2M -G —2F)tr( )

F(5G+F=2M)te* T2+ A)]. (63)
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It can be readily shown that the corresponding plastic work conjugate equivalent plastic
strain rate £ is

. /2 F+2G I G+2F
5= |2 p2 - p2 .
3 3GToF tr (Df )+2( v |)tr(D, A)

F+G _G+2F vz
R | 2 (P
( G M )tr (D; A)] . (64

“~

so that
Gé* =L, :DP. (65)

4.6. Small elastic strains
In this section we consider the case of infinitesimal elastic strains and show that the
formulation simplifies considerably due to the secondary role of elasticity. In this case we
have (F° = R°- U°)
Us = 1+¢0r, (66)
where
lef <1, O"=0° and sup |05} =0(). 67

The kinematics can now be written as

FF =R +eR-05, J=1+0@)., D =cR -0 -RT+0(R, e209),

(68, 69, 70)
W = 0(Re, e20F),  W* = R R+ 0(°R¢, 62 0), (71, 72)
D’ = R*-Df -RT+0(sW?), WP = R -WP-RT+0(eD?). (73.74)

In most metals, the elastic strains are of the order of the yield strain, i.e. ¢ = 107 -
1072, Also, all stress components arc of the order of the yield stress or smaller, and the
elastic moduli C are O(o/t). The expressions for elastic moduli (30) and (31) can now be
written as

=C+0(), £=C+0(), (75, 76)
where
Citr = R RS RS, RS, Crnny- an
Furthermore,
L =540(0) = R 1-R°+ 0 (co). (78)

Equations (37) and (38) for D and WY can now be written in the current configuration
as

D® = ¢ I+drt+d t’ +dat+ds(rrata-t)+¢,(c* a+a-t?)+0(Lf), (79)

and
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WP = p.(tra—a 1)+t a—a-t)+ntra-t°—t ra 1)+ O(eLP), (80)

wherea = R*- AR

For definiteness, we assume now that the yield conditionf'(E‘ A.s) = 0 has dimensions
of stress ; in the case of Hill's yield criterion, this amounts to assuming that ¢, has dimensions
of stress and dividing (56) through by .. Using (78) and taking into account that the yield
function f'is an isotropic function of its arguments, we can readily show that

FEAS) = f(5.A.59)+0(eo) = f(1.a.5)+ O(ea) = 0. (81)
When the yield function is normalized as mentioned above, we can also show that
N"=R N -RT+0(s) = O(1). (82)

Next, we assume that N7 = O (1) and. in view of (45) and (35) we also have that N* = O (1)
and Q" = O(l). Equations (42). (52) and (54) can be written as

N":C+0(0) ¢ = C i) )C N'N": C+0(a’/e)

_- o N 9 3
S+NCINTFO(0) A SN E N T O(g) O (83.89)

and

¥y =2+0(a). (83)
Summarizing., we write cqn (53) as

v CNPNTCHO(ate) )
T —-< —-/:(/)s ENTLCN 4 Oa) O(ﬂ)).D. (86)

A note of caution is relevant at this point. In the case ot small elastic strains, it is common
to write [see, for example, McMecking and Rice (1975); Dafalias (1984)]

v " C:N°N":C D -
T 1/) AN e ) D (87)

where the above equation is consistent with (86). [t should be noted, however, that in most
metals H is of the same order of magnitude as o in such a case, when the $ term is
retained in (87), the O (o) terms in the denominator of (86) cannot properly be disregarded.
Therefore, when $ = O (o) and (87) is used, the actual stress—strain relation in the hardening
range is not precisely modelled. Furthermore, when the elastic strains are small and
$H = O(a), (87) with H = 0 (perfect plasticity) provides a consistent first order approxi-
mation of the exact constitutive equations of the hardening material. Rice (1970) reached
the same conclusion for the case of small total (clastic and plastic) strains of a hypo-elastic-
plastic material that obeys the Prandtl-Reuss equations.

5. FINITE ELEMENT FOUNDATION

Two different finite element formulations are discussed in the following.
In the explicit formulation of McMeeking and Rice (1975), the rate form of the
equilibrium equations are enforced through the virtual power statement (Hill, 1959)

| v I S(
.[_j[r:D*—r:(ZD-D"—Lr-l,*)]dV=J by - »*dl+J Toeve dS’dS. (88)

where ¥ is the volume of the continuum and S its surface in the current configuration B,



Elastoplastic transformations of metals 2149

S, is the surface in the undeformed configuration By, T, = Ny t, Ny is the unit normal to
So. t = F~ '+ 1 is the nominal (first Piola—KirchhofT ) stress tensor, b, is the body force per
unit undeformed volume, v* is an arbitrary virtual velocity field, and D* and L* are the
corresponding deformation rate and velocity gradient respectively. Once the finite element
discretization is introduced, the above equation reduces to a linear system of equations for
the nodal displacement increments. In this case, the solution is developed incrementally,
and the use of the so-called *‘equilibrium correction™ at the end of each increment improves
the accuracy of the numerical solution.

An alternative approach would be to start out with the weak form of the momentum
balance, i.e. to use the principle of virtual work itself instead of its rate form (88) (Hibbitt,
1984 ; Moran et al.. 1990). In this case, the discretized equations consist of a system of non-
linear equations which must be solved for the nodal displacements. A common solution
technique is Newton's method. in which case the Jacobian plays the role of the incremental
*stiffness matrix™ in the calculations.

6. NUMERICAL INTEGRATION OF THE ELASTOPLASTIC EQUATIONS

In a finite element environment the solution of elastoplastic problems is developed
incrementally and the constitutive equations are integrated at the element Gauss poiats. In
a displacement-based finite element formulation the solution is deformation driven. At a
material point, the solution (Z,.s,.F.F,) at time ¢, as well as the deformation gradient
F,,,attime,,, = t,+ At are supposed to be known and one has to determine the solution
(E,,,,".S',,‘,.Fg* fatt,, .

In the following, we outline an algorithm for the numerical integration of the elasto—
plastic equations, for the case where the yield function (32) depends on a set of state
variables s, whercas NP, QF and 5in (53) are independent of 5; this is for exampic the case
in Hill's model as formulated in Section 4.5, where £P is the only state variable. We start
with eqn (7), which can be written as

kP = A(NP 4+ QP) - FP. (89)

The direction of plastic flow NP+ is assumed to be constant over the increment and
equal to (NP +QP),., = B,, ;. Integration of the above equation then yields

Fiol = Fp "-exp(—A4B,, ) = Fi ' -[I-AJB,,  + }A2°B],  +O(AL)],  (90)

which is truncated to
Fiii=F ' (1-AJB,, +1A2°B], ). @n
The evolution equation for s (33,) is integrated numerically using a backward Euler
procedure and the constitutive calculations are based on an implicit treatment of the

elastoplastic equations. A summary of the equations is given in the following:

Frov=F.  Fil) = FLu- (1-4A7B,,  + 1A2°B], ), (92)

C T © i < oo
wer =Foo o Fouy, E.. =G, -], Sml-!:po Sre »
JE a4+l

(93, 94, 95)

Efn»l =S,‘H‘|'C:+|. Suet =x,,+AJj(}'.‘.,,,,,.A). f(ErH«lvAvfnél):Ov
(96,97, 98)

where Fi,, = F,,,*F,~! is the trial elastic deformation gradient. We choose Al as the
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primary unknown, treating the yield condition (98) as the basic equation for its deter-
mination. The solution is obtained using the secant method. Within the secant loop. for
each value of A/ the corresponding £, . is determined from (92)—(96) using Newton'’s
method.

Equation (91) implies that

det (F2_ ) = [+ A4 tr (NP), ., + O (Ai)] det (F?). (99)

If the material is plastically incompressible, then tr (N7),,, = 0. and the above equation
becomes

det (F2, ) = [ + O(AiY)] det (FT). (100)

When the plastic equations are normalized as discussed in Section 4.6, 4 is dimensionless
and AZ is a measure of the “plastic strain increment™ DPA¢. Let A be O(J) (d small) at all
increments ; then we can show by induction that

det (Fr ) = 1+ 0(57). (1oh)

With d being of order 10 7, the above equation shows that the integration algorithm
preserves plastic incompressibility to within terms of order 10 ** in comparison to unity.

7. EXAMPLES

The finite element caleulations are carried out using the ABAQUS general purpose
finite clement program (Hibbitt. 1984). This code provides a general interface so that the
user may introduce his; her own constitutive model in a “‘user subroutine™. The integration
of the clastoplastic cquations is carried out using the algorithm outlined in Scction 6. The
formulation is based on the weak form of the momentum balance and the discretized non-
lincar equations are solved using Newton's method. In our calculations, we approximate
the Jacobian of the Newton scheme by the “tangent stiffness matrix™ of McMecking and
Rice (1975). Such an approximation is first order accurate as the increment A2 -0 it
should be emphasized, however, that the aforementioned approximation influences the rate
of convergence only und not the accuracy of the results.

7.1, Plane strain simple shear

In order to check the consistency of the finite ciement formulation and the numerical
implementation of the algorithm described in the previous section we carry out a single
clement test subject to simple shear. We consider a plane strain simple shear transformation
v along the direction v, as shown in Fig. 3. The material is assumed to be rigid-perfectly-
plastic obeying Hill's yield criterion (55) with associated flow rule and ¢, = ¢, = constant.
This problem has been analysed in detail by Dafalias and Rashid (1989) ; for completeness,
the solution is outlined briefly in the following,

X, ~
X " X
f X2 i 1
1 ,r—)’—*
] // )X' ;sx1
o} 1

Fig. 3. Planc strain simple shear.
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A coordinate system £,—%, is introduced in such a way that %, is always in the
direction of transverse isotropy in the deformed configuration. Referring to Fig. 3, we can
readily show that

1

v+cot,’ (102)

tan @ =

where 8 is the angle of orientation of X, and 8, the corresponding angle when y = 0 (see
Fig. 3). The only non-zero components of the rate of deformation D are

D, = —=D,,=19sin20 and D,, = iycos 20, (103)
where a circumflex indicates components with respect to the £, — %, coordinate system.

It should be noted that, because of incompressibility, the stresses can only be deter-
mined to within an arbitrary pressure. The yield condition and the flow rule can be written
as

F(¢1,+26%) +G[(d7 —622)° + (261 +d72)°) + 2Md{, ~ a5 = 0, (104)
Lysin 20 = 64Gd,,, 0= =2i[(F+2G)é",,+(G+2F)d%,], (105, 106)
1y cos 20 = 2iM3d,,. (107

The solution to the above equations is readily found to be

&'y 0'"21__'512 Gy

o en e e ¥ T Olen—em v Gen v s ane e (9
where
e =§il—'32—269. e = f%qc” and ¢, =°‘z§6. (109)
Finally, the components with respect to the x —x, coordinate system are found from
oy = 38" +692) + }(d7, —d%) cos 20—, sin 20, (110)
a4, = (61, +6%) — Hdy —6%,) cos 20+ 6, sin 20, (ary
6,3 = 3(d), —d%)sin 20+ 6, cos 20. (112)

In Fig. 4 the deviatoric stress components are plotted versus y for F= 125, G =05,
M = 1.5 and 8, = 90°. The open symbols in that figure indicate the results of the elastic-
plastic finite element calculations. The elastic moduli used in the finite element calculations
are three orders of magnitude larger than a4 so that the role of elasticity becomes secondary.
The results of the finite element calculations agree well with the exact solution (108).

1.2. Plane strain extrusion

We consider plane strain extrusion of a metal-matrix composite reinforced by short
fibers which are initially aligned in the direction of extrusion. The height reduction is
Ah/hy = 0.25, and the length of the reduction region is L = 2k, (see Fig. 5), where A, is the
height at the start of the reduction region. The reduction area of the die is shaped in the
form of a fifth order polynomial with zero slope and curvature at both ends. A rigid smooth
piston pressing against the rear face of the billet providing the driving force. The coefficient
of friction along the die-metal interface is assumed to vanish,
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Fig. 4. Compurison of finite element and analytical solutions.

The material is assumed to be lincar-elastic plastic obeying Hill's anisotropic yicld
criterion with associated flow rule as described in Section 4.5. The parameter o, is assumed
to be a function of the equivalent plastic strain according to the relation

} f“ (5]
R R ) \ (113
a, £y

where gy, £, and a1 are material constants.

As a model material, we consider an aluminum matrix reinforced by short aligned
boron fibers. Typical values of the clastic constants are £ = 70 GPa, v = 0.3 for aluminum,
and E = 385 GPa, v = 0.2 for boron, where E and v and Young's modulus and Poisson’s
ratio respectively. Assuming that the fiber volume fraction is 20% and using the estimation

{a)
}-reduction regio

{b}

3 X
Fig. 5. {a) The deformed finite clement mesh and the plastic zone. (b) Direction of transverse
wsotropy at the centroid of cach element.
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procedure described in Christensen (1979). we find the following approximate values for
the elastic constants of the composite: E,, = 135 GPa, u,, =35 GPa, u,, = 30 GPa,
K,; =80 GPa and v,; = 0.27. If we now assume that ¢,/0, ~0.4, 1,,/0, =~ 0.25 and
t,./o, ~ 04, we find F=1.25. G =0.5 and M = 8. A typical value for g, would be 400
MPa (Chawla, 1987).

Guided by the above estimates, we use the following values in the computations:
E\Jog =335, u\sfoq =90, tjog =75, Kry/oo =200, v,» =027, F=1.5. G=05 and
M = 8. The constitutive parameters in eqn (113), above. are taken to be & = 0.002 and
n=23.

Four-node isoparametric elements with 2 x 2 Gauss integration and an independent

0.8 —
06 |
F [
Uo’lo |
0.4 »
0.2 =
0. i AN I TS ST I UGS ST AT B S AU SN S AN AT SR SN Al AT AU S |
0. i, 2, 3 4, S. 6.
Afhy
Fig. 6. The variation of the extrusion force.
1.50 ~
TR
Ozy [
ag Z
05 -
-
0. -
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-1.
-1.50 PRI RS T HE SR SR YO SN S S |
-2 0. 2 4. 6. 8.
.z‘/ho

Fig. 7. The distribution of the longitudinal stress a ...
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interpolation for the dilatation rate are used in order to avoid artificial constraints on
incompressible modes (Nagtegaal et al., 1974).

Figure 5a shows the deformed finite element mesh and the extent of the active plastic
elements at the end of the calculation; Fig. 5b shows the direction of transverse isotropy
at the centroid of each element. The normalized extrusion force F/(o4h,) is plotted versus
the normalized piston displacement A/h, in Fig. 6. The x and y coordinates used in the two
following figures are as shown in Fig. 5b, where the x-axis is the longitudinal axis of
symmetry of the billet and x = 0 at the start of the reduction region of the die. Figure 7

0.8

T

T JT
L

0.6
y/ho

04

LA (N NN B AN B |

02

T

oo b e O

-0.40 -0.20 0.0 0.20 0.40
022

]

Iig. 8. Residual stress distribution across the section of the billet.
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Fig. 9. Residual stress distribution across the section of the billet (isotropic elasticity).
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shows the variation of the longitudinal stress ¢, along lines passing through different rows
of elements in the billet; in that figure, the open triangles, circles and squares correspond
to the lower, fifth and top row of elements respectively. Figure 8 shows the vaniation of the
residual longitudinal stress across the section of the billet after the exit from the die. 1t is
interesting to note that the longitudinal residual stress is compressive near the outer surface
of the billet ; this contrasts with the resuits obtained for isorropic materials where the residual
stress is found to be tensile near the free surface (Lee et al.. 1977).

A separate set of calculations is carried out. in which the same plastic parameters are
used but the elastic response of the composite is assumed to be isotropic with E/e, = 300
and v = 0.3. The resulting residual stresses across the section of the billet is shown in Fig.
9. The residual stress distribution is now close to zero near the surface, whereas near the
axis of the billet is similar to that shown in Fig. 8. It appears. therefore. that the magnitude
(and probably the sign) of the residual stress near the surface of the billet depends strongly
on the elastic properties of the composite.
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